189 research outputs found

    The Emerging Role of microRNAs in Schizophrenia and Autism Spectrum Disorders

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs conserved throughout evolution whose perceived importance for brain development and maturation is increasingly being understood. Although a plethora of new discoveries have provided novel insights into miRNA-mediated molecular mechanisms that influence brain plasticity, their relevance for neuropsychiatric diseases with known deficits in synaptic plasticity, such as schizophrenia and autism, has not been adequately explored. In this review we discuss the intersection between current and old knowledge on the role of miRNAs in brain plasticity and function with a focus in the potential involvement of brain expressed miRNAs in the pathophysiology of neuropsychiatric disorders

    Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo

    Get PDF
    In the visual cortex, inhibitory neurons alter the computations performed by target cells via combination of two fundamental operations, division and subtraction. The origins of these operations have been variously ascribed to differences in neuron classes, synapse location or receptor conductances. Here, by utilizing specific visual stimuli and single optogenetic probe pulses, we show that the function of ​parvalbumin-expressing and ​somatostatin-expressing neurons in mice in vivo is governed by the overlap of response timing between these neurons and their targets. In particular, ​somatostatin-expressing neurons respond at longer latencies to small visual stimuli compared with their target neurons and provide subtractive inhibition. With large visual stimuli, however, they respond at short latencies coincident with their target cells and switch to provide divisive inhibition. These results indicate that inhibition mediated by these neurons is a dynamic property of cortical circuits rather than an immutable property of neuronal classes.Marie Curie International Fellowship (Postdoctoral Fellowship FP7-PEOPLE-2010-IOF))National Institutes of Health (U.S.) (Grant EY007023)National Institutes of Health (U.S.) (Grant NS090473)Simons Foundatio

    Rett Syndrome: Genes, Synapses, Circuits, and Therapeutics

    Get PDF
    Development of the nervous system proceeds through a set of complex checkpoints which arise from a combination of sequential gene expression and early neural activity sculpted by the environment. Genetic and environmental insults lead to neurodevelopmental disorders which encompass a large group of diseases that result from anatomical and physiological abnormalities during maturation and development of brain circuits. Rett syndrome (RTT) is a neurological disorder of genetic origin, caused by mutations in the X-linked gene methyl-CpG binding protein 2 (MeCP2). It features a range of neuropsychiatric abnormalities including motor dysfunctions and mild to severe cognitive impairment. Here, we discuss key questions and recent studies describing animal models, cell-type specific functions of methyl-CpG binding protein 2 (MeCP2), defects in neural circuit plasticity, and attempts to evaluate possible therapeutic strategies for RTT. We also discuss how genes, proteins, and overlapping signaling pathways affect the molecular etiology of apparently unrelated neuropsychiatric disorders, an understanding of which can offer novel therapeutic strategies for a range of autism spectrum disorders (ASDs)

    Synaptic Integration by V1 Neurons Depends on Location Within the Orientation Map

    Get PDF
    [Abstract] Neurons in the primary visual cortex (V1) are organized into an orientation map consisting of orientation domains arranged radially around “pinwheel centers” at which the representations of all orientations converge. We have combined optical imaging of intrinsic signals with intracellular recordings to estimate the subthreshold inputs and spike outputs of neurons located near pinwheel centers or in orientation domains. We find that neurons near pinwheel centers have subthreshold responses to all stimulus orientations but spike responses to only a narrow range of orientations. Across the map, the selectivity of inputs covaries with the selectivity of orientations in the local cortical network, while the selectivity of spike outputs does not. Thus, the input-output transformation performed by V1 neurons is powerfully influenced by the local structure of the orientation map

    Author Correction: Task-dependent representations of stimulus and choice in mouse parietal cortex.

    Get PDF
    In the original version of this Article, the Acknowledgements section was inadvertently omitted. This has now been corrected in both the PDF and HTML versions of the Article

    Combinación de nuevas técnicas electrofisiológicas y de imagen en el estudio de la función de la corteza visual primaria

    Get PDF
    This work summarizes current research focused on explaining orientation selectivity of primary visual cortex (V1), and describes the electrophysiological and imaging techniques than are being used. Development. The study of orientation selectivity in V1 is key to understanding the cortical mechanisms implicated in the processing of sensory information, but this enterprise has proved more challenging than previously thought and there is no consensus about the best model to explain V1 neurons’ activity. Ongoing research is focused on determining the importance of the different inputs that a cortical cell receives (thalamic and lateral cortical inputs), and their link to cortical architecture. To achieve that, current research is combining optical imaging techniques with intracellular recordings of V1 neurons. Recent findings have found differences in the synaptic integration performed by neurons located in the iso-orientation domains vs orientation centers of the functional V1 map. Conclusions. Data describing synaptic activity combined with the cortical functional structure are yielding new clues about V1 computation, suggesting that there is more than one mechanism capable of generating orientation selectivit

    Local networks in visual cortex and their influence on neuronal responses and dynamics

    Get PDF
    [Abstract] Networks of neurons in the cerebral cortex generate complex outputs that are not simply predicted by their inputs. These emergent responses underlie the function of the cortex. Understanding how cortical networks carry out such transformations requires a description of the responses of individual neurons and of their networks at multiple levels of analysis. We focus on orientation selectivity in primary visual cortex as a model system to understand cortical network computations. Recent experiments in our laboratory and others provide significant insight into how cortical networks generate and maintain orientation selectivity. We first review evidence for the diversity of orientation tuning characteristics in visual cortex. We then describe experiments that combine optical imaging of orientation maps with intracellular and extracellular recordings from individual neurons at known locations in the orientation map. The data indicate that excitatory and inhibitory synaptic inputs are summed across the cortex in a manner that is consistent with simple rules of integration of local inputs. These rules arise from known anatomical projection patterns in visual cortex. We propose that the generation and plasticity of orientation tuning is strongly influenced by local cortical networks—the diversity of these properties arises in part from the diversity of neighbourhood features that derive from the orientation map

    Effect of distracting faces on visual selective attention in the monkey

    Get PDF
    In primates, visual stimuli with social and emotional content tend to attract attention. Attention might be captured through rapid, automatic, subcortical processing or guided by slower, more voluntary cortical processing. Here we examined whether irrelevant faces with varied emotional expressions interfere with a covert attention task in macaque monkeys. In the task, the monkeys monitored a target grating in the periphery for a subtle color change while ignoring distracters that included faces appearing elsewhere on the screen. The onset time of distracter faces before the target change, as well as their spatial proximity to the target, was varied from trial to trial. The presence of faces, especially faces with emotional expressions interfered with the task, indicating a competition for attentional resources between the task and the face stimuli. However, this interference was significant only when faces were presented for greater than 200 ms. Emotional faces also affected saccade velocity and reduced pupillary reflex. Our results indicate that the attraction of attention by emotional faces in the monkey takes a considerable amount of processing time, possibly involving cortical–subcortical interactions. Intranasal application of the hormone oxytocin ameliorated the interfering effects of faces. Together these results provide evidence for slow modulation of attention by emotional distracters, which likely involves oxytocinergic brain circuits.Simons FoundationNational Institutes of Health (U.S.) (Grant EY017292

    Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo

    Get PDF
    Astrocytes play important roles in synaptic transmission and plasticity. Despite in vitro evidence, their causal contribution to cortical network activity and sensory information processing in vivo remains unresolved. Here we report that selective photostimulation of astrocytes with channelrhodopsin-2 in primary visual cortex enhances both excitatory and inhibitory synaptic transmission, through the activation of type 1a metabotropic glutamate receptors. Photostimulation of astrocytes in vivo increases the spontaneous firing of parvalbumin-positive (PV[superscript +]) inhibitory neurons, while excitatory and somatostatin-positive (SOM[superscript +]) neurons show either an increase or decrease in their activity. Moreover, PV[superscript +] neurons show increased baseline visual responses and reduced orientation selectivity to visual stimuli, whereas excitatory and SOM[superscript +] neurons show either increased or decreased baseline visual responses together with complementary changes in orientation selectivity. Therefore, astrocyte activation, through the dual control of excitatory and inhibitory drive, influences neuronal integrative features critical for sensory information processing.National Institutes of Health (U.S.)National Science Foundation (U.S.)Picower Institute for Learning and Memory (Innovation Fund)Simons FoundationMarie Curie International Outgoing Fellowship (FP7-253635)Consolider (CDS2010-00045)Ramon y Cajal Program (RYC-2012-12014
    corecore